Site- and Regloselectivity of the Hetero-Diels-Alder and Cheletropic Additions of Sulfur Dioxide to a 2,3,6,7-Tetramethylldenebicyclo[3.2.1]octane Derivative.

Brigitte Deguin and Pierre Vogel*
Section de Chimie de l'Université de Lausanne, 2, rue de la Barre, CH 1005 Lausanne, Switzerland

> Summary: At -55 ${ }^{\circ} \mathrm{C} \mathrm{SO}_{2}$ adds to 4-[(tert-butyl)dimethylsilyloxy]-1-methoxy-2,3,6,7-tetramethylidenebicyclo[3.2.I]octane reversibly and selectively onto the s-cis-butadiene moiety at $C(2), \mathrm{C(} 3)$ giving a single regioisomeric sultine. At $45^{\circ} \mathrm{C}$ the cheletropic addition of SO_{2} ocurs selectively giving the monosulfolene attached at $\mathrm{C}(2) \mathrm{C}(3)$.

Simple 1,3-dienes such as isoprene and (E)-piperilene undergo hetero-Diels-Alder additions below $-60^{\circ} \mathrm{C}$ and give the corresponding 3,6 -dihydro-1,3-oxathiin-2-oxides (sultines) with high regioselectivity. ${ }^{1}$ The sultines are unstable above $-50^{\circ} \mathrm{C}$ and undergo cycloreversion liberating the starting dienes and SO_{2} that undergo cheletropic additions ${ }^{2}$ above $-40^{\circ} \mathrm{C}$ giving the corresponding sulfolenes. ${ }^{3}$ The Diels-Alder additions of the exocyclic tetraene 1 to strong dienophiles ($\mathrm{X}=\mathrm{X}$) such as ethylenetetracarbonitrile, dimethyl acetylenedicarboxylate and maleic anhydride were not site selective and gave mixture of the corresponding monoadducts 2 and 3 together with the bis-adducts $4 .{ }^{4}$ No significant regioselectivity was noticed for the cycloaddition of 1 to methyl propyonate and methyl vinyl ketone. In contrast with these results, we report here that SO_{2} adds to tetraene 1 with high site-selectivity for both its hetero-Diels-Alder and cheletropic additions, the s-cis-butadiene moiety at $\mathrm{C}(2), \mathrm{C}(3)$ being preferred over that at $\mathrm{C}(6), \mathrm{C}(7)$. Furthermore, in the case of the hetero-Diels-Alder addition $1+\mathrm{SO}_{2}$ only one single regioisomeric sultine was observed.

When a 0.2 M solution of 1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{SO}_{2} 7: 1$ (w / w) was allowed to stand at $-55^{\circ} \mathrm{C}(5 \mathrm{~mm}$ sealed NMR tube) the monosultine 5 was formed slowly. After 2 days at $-55^{\circ} \mathrm{C}, 50 \%$ of 5 was formed together with $<5 \%$ of sulfolene 6 and ca. 5% of an unknown compound the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of which was not consistent with an isomeric sultine or sulfolene. After 7 days at $-55^{\circ} \mathrm{C}$, nearly 95% of 1 had reacted. At $-45^{\circ} \mathrm{C}$, sultine 5 underwent cycloreversion into $1+\mathrm{SO}_{2}$ that reacted slowly to give 6 which was obtained in 85% yield after 24 h at $0^{\circ} \mathrm{C}$. The cheletropic addition of a second equivalent of SO_{2} to give the bis-sulfolene 7 was a very slow process at $0^{\circ} \mathrm{C}$. A good yield of $7(70-80 \%)$ was obtained when 6 was reacted with a large excess $\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{SO}_{2} 1: 5(\mathrm{w} / \mathrm{w})$ at $20^{\circ} \mathrm{C}$ for 24 h . After prolonged standing at $0-20^{\circ} \mathrm{C}, 6$ did not equilibrate with an isomeric sulfolene. One cannot exclude yet that both 5 and 6 are preferred for thermodynamic reasons rather then for kinetic reasons. Because 7 decomposed on heating, we could not establish whether 6
was formed or not by elimination of SO_{2}.
The structures of $5,{ }^{5} 6$ and 7^{7} were deduced from their ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra and with the help of double irradiation experiments. In the case of 5 the homoallylic coupling constants ${ }^{5} J_{\mathrm{H}, \mathrm{H}}$ between protons $\mathrm{H}-\mathrm{C}(3)$ on one hand, and protons $\mathrm{H}-\mathrm{C}(6)$ and $\mathrm{H}-\mathrm{C}(8)$, on the other hand, ${ }^{8}$ allowed one to distinguish between pseudo-equatorial and pseudo-axial protons at $\mathrm{C}(3)$ and $\mathrm{C}(6)$. Strong NOE's were observed between the proton pairs $\mathrm{H}-\mathrm{C}(8) / \mathrm{H}-\mathrm{C}(9), \mathrm{H}-\mathrm{C}(8) / \mathrm{H}_{\mathrm{e}}-\mathrm{C}(6)$ consistently with the conformation shown for 5 in the Fig. NOE was also observed between the olefinic protons and $\mathrm{H}-\mathrm{C}(9)$ and MeO protons. The axial $\mathrm{S} \mathbf{O}$ moiety of 5 was assumed. ${ }^{9}$

The selectivities reported here for the reaction of 1 with SO_{2} are striking; they rise a number of questions to which we hope to propose answers when further reactions of SO_{2} with polyenes analogous to $\mathbf{1}$ will have been examined.

Acknowledgments. We thank F. Hoffmann-La Roche \& Co., AG (Basel), the Swiss National Science Foundation, and the Fonds Herbette (Lausanne).

References and Notes

1. Deguin, B.; Vogel, P. J. Am. Chem. Soc. 1992, 114, 9210.
2. Woodward, R. B.; Hoffmann, R. In "The Conservation of Orbital Symmetry", Academic Press, New York, 1970, pp. 152.
3. De Bruin, G. Proc. K. Ned. Akad. Wet. 1914, 17, 585; Turk, S. D.; Cobb, R. L. In "1,4-Cycloaddition Reactions", Hamer, J., Ed., Academic Press, New York, 1907, pp 13.
4. Burnier, G.; Vogel, P. Helv. Chim. Acta 1990, 73, 985.
5. Data of 5: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (Bruker, $\mathrm{ARX} 400, \mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{SO}_{2},-55^{\circ} \mathrm{C}$) $\delta_{\mathrm{H}}: 5.5,5.2,5.1,4.8\left(4 \mathrm{~s}, \mathrm{H}_{2} \mathrm{C}=\mathrm{C}(10)\right.$, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(11)\right), 4.57$ (ddd, ${ }^{2} J=15,{ }^{5} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{C}(6), \mathrm{H}_{\mathrm{a}} \mathrm{C}(3)=3,{ }^{2} \mathrm{~J}_{\mathrm{5}}\left(\mathrm{H}_{\mathrm{a}}-\mathrm{C}(6), \mathrm{H}_{\mathrm{e}}-\mathrm{C}(3)\right)=2, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(6)\right), 4.20\left(\mathrm{dd},{ }^{2} J=\right.$ $\left.15,{ }^{5} J\left(\mathrm{H}_{2}-\mathrm{C}(6), \mathrm{H}_{3}-\mathrm{C}(3)\right)=1.0, \mathrm{H}_{\mathrm{e}}-\mathrm{C}(6)\right), 3.82{ }^{2}\left(\mathrm{dd},{ }^{3} \mathrm{~J}=2,{ }^{5} \mathrm{~J}\left(\mathrm{H}_{\mathrm{a}}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(8)\right)=1.0, \mathrm{H}-\mathrm{C}(8)\right), 3.53$ (dddd, $\left.{ }^{2} J=17,{ }^{5} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{C}(3), \mathrm{H}_{\mathrm{a}}-\mathrm{C}(6)\right)=3,{ }^{5} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{C}(3), \mathrm{H}_{\mathrm{c}}-\mathrm{C}(6)\right)={ }^{5} J\left(\mathrm{H}_{\mathrm{a}} \mathrm{C}(3), \mathrm{H}-\mathrm{C}(8)\right)=1.0, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(3)\right), 3.06$ (dd, $\left.{ }^{2} J=17,{ }^{5} J\left(\mathrm{H}_{3}-\mathrm{C}(6), \mathrm{H}_{\mathrm{e}}-\mathrm{C}(3)\right)=2, \mathrm{H}_{\mathrm{e}}-\mathrm{C}(3)\right), 2.85\left(\mathrm{dd},{ }^{3} J=6,2, \mathrm{H}-\mathrm{C}(9)\right), 2.28\left(\mathrm{~d},{ }^{2} J=10, \mathrm{H}_{\mathrm{syn}}-\mathrm{C}(12)\right), 1.92$ (dd, ${ }^{2} J=10,{ }^{3} J=6, \mathrm{H}_{\text {ant }}$ - $\mathrm{C}(12)$), $0.90(\mathrm{~s}, \mathrm{t}-\mathrm{Bu}), 0.16 \& 0.15$ ($2 \mathrm{~s}, \mathrm{Me}_{2} \mathrm{Si}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $-55^{\circ} \mathrm{C}$) $\delta_{\mathrm{C}}: 148.0,145.0\left(2 \mathrm{~s}, \mathrm{C}(10), \mathrm{C}(11)\right.$), 129.4, 127.4 ($2 \mathrm{~s}, \mathrm{C}(2), \mathrm{C}(7)$), 109.2, 101.0 ($2 \mathrm{t},{ }^{1} \mathrm{~J}^{2}=160$,
 46.3 ($\mathrm{d},{ }^{1} J=140, \mathrm{C}(9)$), $44.8\left(\mathrm{t},{ }^{1} J=140, \mathrm{C}(6)\right), 31.3\left(\mathrm{t}{ }^{1} \mathrm{~J}=135, \mathrm{C}(12)\right.$), $25.3\left(\mathrm{q},{ }^{1} \mathrm{~J}=125, \mathrm{t}-\mathrm{Bu}\right), 17.7(\mathrm{~s}$, $\mathrm{SiC}),-5.1,-5.2\left(2 \mathrm{q},{ }^{1} \mathrm{~J}=118, \mathrm{Me}_{2} \mathrm{Si}\right)$.
6. Data of 6: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{SO}_{2}, 0^{\circ} \mathrm{C}\right) \delta_{\mathrm{H}}$: $5.62,5.38,5.22,4.95(4 \mathrm{~s}), 4.0-3.9\left(\mathrm{~m}, \mathrm{H}_{\mathrm{z}}-\mathrm{C}(3)\right.$, $\left.\mathrm{H}_{\mathrm{a}}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(7)\right), 3.8-3.72$ \& 3.62-3.60 (2m, $\left.\mathrm{H}_{\mathrm{b}} \mathrm{C}(3), \mathrm{H}_{\mathrm{b}}-\mathrm{C}(5)\right), 3.33(\mathrm{~s}, \mathrm{MeO}), 2.98(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8)), 2.22$ (d, ${ }^{2} J=10$) \& 1.93 (dd, ${ }^{2} J=10,{ }^{3} J=6, \mathrm{H}_{2} \mathrm{C}(11)$), $0.95(\mathrm{~s}, \mathrm{t}$ - Bu$), 0.20 \& 0.15\left(2 \mathrm{~s}, \mathrm{Me} \mathrm{e}^{2} \mathrm{Si}\right) ;{ }^{13} \mathrm{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{SO}_{2}, 0^{\circ} \mathrm{C}$) δ_{C} : $147.4,145.3,139.9,128.6$ (4 s), 109.7 ($\mathrm{t}, 2 \mathrm{C},{ }^{1}{ }_{\mathrm{J}=159}$), 84.3 (s, $\mathrm{C}(1)), 72.4\left(\mathrm{~d},{ }^{1} J=146, \mathrm{C}(7)\right), 58.8\left(\mathrm{t},{ }^{1} J=143, \mathrm{C}(3)\right), 55.7\left(\mathrm{t},{ }^{1} J=157, \mathrm{C}(5)\right), 52.6\left(\mathrm{q},{ }^{1} J=143, \mathrm{MeO}\right)$, $47.4\left(\mathrm{~d},{ }^{1} J=141, \mathrm{C}(8)\right.$), $31.8\left(\mathrm{t},{ }^{1} J=135, \mathrm{C}(11)\right.$), $25.8\left(\mathrm{q},{ }^{1}{ }_{J=125}\right), 18.3(\mathrm{~s}),-4.61 \&-4.74\left(2 \mathrm{q},{ }^{1}{ }^{J}=119\right)$.
7. Data of 7: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{SO}_{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}\right) \delta_{\mathrm{H}}: 4.1\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}(7)\right.$), $4.0-3.75\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}(3)\right.$, $\left.\mathrm{H}_{2} \mathrm{C}(5), \mathrm{H}_{2} \mathrm{C}(10), \mathrm{H}_{2} \mathrm{C}(12)\right), 3.35(\mathrm{~s}, \mathrm{MeO}), 3.08(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8)), 2.58\left(\mathrm{dd},{ }^{2} J=10,3 \mathrm{~J}=5\right) \& 2.45(\mathrm{~d}, 2 J=$ $10, \mathrm{H}_{2} \mathrm{C}(14)$), $\left.0.90(\mathrm{~s}, \mathrm{t}-\mathrm{Bu}), 0.16,0.15\left(2 \mathrm{~s}, \mathrm{Me}_{2} \mathrm{Si}\right),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{SO}_{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2}\right), 20^{\circ} \mathrm{C}\right) \delta_{\mathrm{C}}$: 125.5 (s, C(2), C(4)), $115.6,113.9(2 \mathrm{~s}, \mathrm{C}(6), \mathrm{C}(9)), 70.9(\mathrm{~s}, \mathrm{C}(1)), 65.3$ (d, ${ }^{1} J=143, \mathrm{C}(7)$), $58.3,57.0$, $56.8,56.1\left(4 \mathrm{t},{ }^{1}{ }_{J=146)}, 52.9\left(\mathrm{q},{ }^{1} J=143, \mathrm{MeO}\right), 47.2\left(\mathrm{~d},{ }^{1}{ }^{1}=144, \mathrm{C}(8)\right), 40.8\left(\mathrm{t},{ }^{1} J=138, \mathrm{C}(14)\right), 26.1(\mathrm{q}\right.$, ${ }^{1} J=125$), 18.7 (s), $-4.5,-4.6$ (2q).
8. Barfield, M.; Sternhell, S. J. J. Am. Chem. Soc. 1972, 94, 1905; Mahaim, C.; Carrupt, P.-A.; Vogel, P. Helv. Chim Acta 1985, 68, 2182.
9. Juaristi, E.; Cuevas, G. Tetrahedron 1992, 48, 5019 and references cited therein.
