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Summaq: At -55T SO, adak to 4-[(~-bu~l~~t~~i~yr)dimerhyrsiryloxyl-l-methoxy-2J,6,7-tetra- 
methylidenebicyclk[32.l]octane reversibly and selectively onto the scis-butadiene moiety at 
C(2), C(3) giving a single regioisomeric s&he. At -4ST the cheletropic addition of SO, 
occurs selective@ giving the monosu&olene attached at C(2), C(3). 

Simple 13dienes such as isoprene and (E)-piperilene undergo hetero-Diels-Alder additions below 

-tWC! and give the corresponding 3,6-dihydro-1,3-oxathiin-2-oxides (sultines) with high regioselectivity.’ 

The sultines are unstable above -50°C and undergo cyclomversion liberating the starting dienes and SO2 that 

undergo cheletropic addition9 above -WC. giving the corresponding sulfolenes.3 The Diels-Alder additions 

of the exocyclic tetraene 1 to strong dienophiles (X=X) such as ethylenetetracarbonitrile, dimethyl 

acetylenedicarboxylate and maleic anhydride were not site selective and gave mixture of the corresponding 

monoadducts 2 and 3 together with the bis-adducts 4P No significant regioselectivity was noticed for the 

cycloaddition of 1 TV methyl propyonate and methyl vinyl ketone. In contrast with these results, we report 

here that SO2 adds to tetraene 1 with high site-selectivity for both its hetero-Diels-Alder and cheletropic 

additions, the s-cb-butadiene moiety at C(2), C(3) being preferred over that at C(6), C(7). Furthermore, in 

the case of the hetero-D&-Alder addition 1 + SO2 only one single regioisomeric sultine was observed. 
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When a 0.2 M solution of 1 in CJ&Cl&SOa 7:l (w/w) was allowed to stand at -WC (5 mm sealed 

NMR tube) the monosultine 5 was formed slowly. After 2 days at -55°C. 50% of 5 was formed together with 

4% of sulfolene 6 and ca. 5% of an unknown compound the ‘H-NMR spectrum of which was not 

consistent with an isomeric sultine or sulfolene. After 7 days at -55T, nearly 95% of 1 had reacted. At 

-45T, sultine 5 underwent cycloreversion into 1 + SO2 that reacted slowly to give 6 which was obtained in 

85% yield after 24 h at 0°C. ‘Ihe cheletropic addition of a second equivalent of SO2 to give the bis-sulfolene 

7 was a very slow process at OT. A good yield of 7 (70-805) was obtained when 6 was reacted with a large 

excess C!D$l~S02 1:5 (w/w) at 20°C for 24 h. After prolonged standing at O-20% 6 did not equilibrate 

with an isomeric sulfolene. One cannot exclude yet that both 5 and 6 are preferred for thermodynamic 

reasons rather then for kinetic reasons. Because 7 decomposed on heating, we could not establish whether 6 
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was formed or not by elimination of SOa. 

The structums of 5.5 @ and 77 were deduced from their ‘H- and 13C-NMR spectra and with the help 

of double irradiation experiments. In the case of 5 the homoallylic coupling constants 5JH,n between protons 

H-C(3) on one hand, and protons H-C(6) and H-C(8), on the other hand,* allowed one to distinguish 

between pseudo-equatorial and pseudo-axial protons at C(3) and C(6). Strong NOE’s were observed 

between the proton pairs H-C(8)/H-C(9), H-C(8)/H&6) consistently with the conformation shown for 5 in 

the Fig. NOE was also observed between the olefiic protons and H-C(9) and Me0 protons. The axial S 0 

moiety of 5 was assumed.9 

The selectivities reported here for the reaction of 1 with SO, are striking; 

they rise a number of questions to which we hope to propose answers when further He ’ ’ 

reactions of SO, with polyenes analogous to 1 will have been examined. Figure $+K 
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